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We applied time-series methods to multivariate sentinel 
surveillance data recorded in Hong Kong during 1998–2007. 
Our study demonstrates that simultaneous monitoring of 
multiple streams of infl uenza surveillance data can improve 
the accuracy and timeliness of alerts compared with moni-
toring of aggregate data or of any single stream alone. 

The use of separate data streams based on sentinel sur-
veillance has long been an accepted approach to moni-

tor community incidence and to enable timely detection of 
infectious disease outbreaks (1,2). Recently, more attention 
has been given to the combined analysis of multivariate 
sentinel data (3–5).  

In this study we explored the possibility of improving 
the ability to more quickly detect peak periods of infl uenza 
activity in Hong Kong through simultaneous monitoring of 
multiple streams of sentinel surveillance data. Our fi ndings 
have general implications in the choice of surveillance al-
gorithms where multistream data are available.

The Study
The local Department of Health publishes weekly re-

ports (6) from a network of 50 private-sector sentinel gen-
eral practitioners (GP) and 62 public-sector sentinel gen-
eral outpatient clinics (GOPC) on the proportion of patients 
seeking treatment for infl uenza-like illness (ILI), defi ned as 
fever plus cough or sore throat (7). In this study, we used 
the GP and GOPC sentinel surveillance data in 9 annual 
infl uenza seasons from 1998–1999 to 2006–2007, stratifi ed 
by 4 geographic regions in Hong Kong—Hong Kong Is-
land, Kowloon, New Territories East, and New Territories 
West—resulting in 8 separate data streams (Figure). 

Each month a median of 1,555 specimens (interquartile 
range 1,140–2,740), primarily from hospitals, were sent to 
the Government Virus Unit of the Department of Health 
(7). We calculated the highest proportion of positive infl u-
enza isolations each season, and used these laboratory data 
to defi ne the onset of each peak activity period when the 

proportion of positive infl uenza A or B isolates exceeded 
30% of the maximum seasonal level (7).

Dynamic linear models (8) were used to generate alerts 
(online Technical Appendix, available from www.cdc.gov/
EID/content/13/7/1154-Techapp.pdf). We determined that 
an aberration had occurred when the current observation fell 
outside a forecast interval generated by the model. For meth-
ods based on monitoring of single data streams only, an ab-
erration triggers an alert. For simultaneous monitoring of all 
8 data streams, we monitored separate aberrations as above 
and generated alerts based on the fi rst occurrence of any 
aberration (M1), 2 simultaneous aberrations (M2), the fi rst 
occurrence of 3 simultaneous aberrations (M3), any 2 aber-
rations within a 2-week period (M4), and any 3 aberrations 
within a 2-week period (M5). In the multistream analyses, 
we compared alerts produced by univariate models, which 
effectively assumed independence between the data streams, 
and multivariate models, which allowed for correlation be-
tween the data streams (online Technical Appendix).

Alerts were compared in terms of their sensitivity, 
specifi city, and timeliness in detecting the onset of peak 
levels of infl uenza activity (9). We combined these metrics 
and estimated the area under the weighted receiver operat-
ing characteristic curve (AUWROC) as an overall measure 
of performance (10). The Table shows the highest AU-
WROC, for each method, from a predefi ned selection of 
parameter combinations and the sensitivity and timeliness 
at a fi xed specifi city of 95%. On the basis of aggregated 
data, we determined that alerts generated from the GOPC 
network achieved a higher AUWROC and better timeli-
ness than those from the GP network. However, the best 
AUWROC from each of the data streams was produced by 
the GP New Territories East data, which outperformed the 
aggregate GP data. Conversely, for GOPC data, the perfor-
mance of aggregate data was superior to that of any single 
data stream.

The Table also shows simultaneous monitoring re-
sults for all 8 geographic data streams from both GPs and 
GOPCs. For the univariate (independent) models for each 
data stream, methods based on simultaneous alerts perform 
well. The optimal methods were M2 and M3 with AU-
WROC of 0.89 and 0.90 and timeliness of 1.22 and 1.47 
weeks, respectively, for a fi xed specifi city of 0.95. In gen-
eral, univariate models performed better than multivariate 
models. Empirical correlation derived from one of the fi t-
ted multivariate models is shown in the online Technical 
Appendix; correlation structures under other models were 
similar (data not shown).

Results were insensitive to the choice of parameters 
(online Technical Appendix). The results also held when 
we varied the defi nition of the start of peak infl uenza activ-
ity between 10% and 50% of peak seasonal levels (online 
Technical Appendix).
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Conclusions
A primary objective of sentinel surveillance is to pro-

vide sensitive, specifi c, and timely alerts at the beginning 
of increased disease activity (11). We evaluated the perfor-
mance of multistream sentinel surveillance of ILI in detect-
ing the onset of peak infl uenza activity. 

Splitting sentinel data into separate geographic-based 
streams and monitoring all 8 streams for 2 or 3 simultane-
ous aberrations provided substantial improvements in AU-
WROC and also in timeliness for a fi xed specifi city when 
compared with monitoring aggregated data or any single 
data stream. We also used multivariate models with vari-
ous alternative correlation structures between data streams, 
but use of these more complex models did not appear to 
improve performance (Table), possibly because correlation 
between streams vary year to year; the multivariate model 
is based on constant correlations (online Technical Appen-
dix). It is possible that other complex multivariate mod-
els may allow even greater improvement in performance; 
however, simultaneous monitoring of data streams may be 
more practical because univariate models may be applied 
in a spreadsheet (7).

Although the relative performance of GP and GOPC 
sentinels may not be directly generalizable to other settings 
with differences in infectious disease dynamics and health-
care systems, the implications for data collection are never-
theless relevant. Inclusion of data streams should be based 
on their value to the overall surveillance system, rather 
than independent performance. For example, simultaneous 
monitoring of data streams where some have lower speci-

fi city and others have higher specifi city could still improve 
overall timeliness. 

Specifi cally regarding Hong Kong, it is unclear why 
alerts from the private GP network have better timeliness 
than those from the public GOPC network. Although we 
note that both networks have different catchment popula-
tions, the GOPC network typically serves elderly and lower 
income groups (12), whereas infl uenza would be more like-
ly to affect children at the start of the infl uenza season (13). 
Differences between geographic regions could be real, when 
disease progresses from 1 region to another (14); however, 
this circumstance is unlikely in Hong Kong, an area of only 
1,000 km2, where a high degree of mixing occurs among a 
population of 7 million persons. Geographic heterogeneity 
could also be explained by differential socioeconomics and 
demographics between different regions, associated differ-
ences in access to healthcare and health-seeking behavior 
issues, or small area variations in reporting behavior among 
the sentinel practices.

A potential caveat of our analysis is the small number 
of annual cycles of sentinel data available for study. How-
ever, until recently, few subtropical or tropical regions had 
begun infl uenza sentinel surveillance. Another limitation is 
the absence of a generally agreed-upon standard in defi ning 
a peak infl uenza season. In our analysis, the start of peak 
activity was defi ned as laboratory isolation rates exceed-
ing 30% of the annual level; however, we found that our 
results were not sensitive to other reasonable thresholds. 
In addition, we compared methods with only a few chosen 
parameter combinations; sensitivity analyses showed that 
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Figure. Nine annual cycles 
(unbroken lines) of general 
practitioner (A) and general 
outpatient clinic (B) geogra-  
phic sentinel surveillance 
data from Hong Kong Island, 
Kowloon, New Territories East, 
and New Territories West, 
1998–2007. The monthly 
proportions of laboratory 
samples testing positive 
for infl uenza isolates are 
overlaid as gray bars, and 
the beginning of each annual 
period of peak activity 
(inferred from the laboratory 
data) is marked with a vertical 
dotted line. ILI, infl uenza-like 
illness.



the results were not sensitive to the smoothing parameter or 
the specifi cation of correlations between streams. Finally, 
alerts generated by other more complicated combinations 
of aberrations might provide further enhancements. How-
ever, the value of simultaneously monitoring separate data 
streams (15) has already been demonstrated by the simple 
combinations chosen here.
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Table. Performance of alerts generated by individual monitoring of aggregate data and separate data streams, and simultaneous 
monitoring of multiple data streams by using univariate and multivariate time series models, Hong Kong, 1998–2007* 

Univariate models Multivariate models†
Data AUWROC Sensitivity‡ Timeliness, wk‡ AUWROC Sensitivity‡ Timeliness, wk‡
Aggregated data
 GP 0.78 1.00 2.41 – – –
 GOPC 0.86 1.00 1.50 – – –
Single stream
 GP   
  HK 0.75 1.00 2.36 0.73 0.87 2.64
   KL 0.66 1.00 2.71 0.62 0.88 3.06
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 GOPC 
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Multiple streams
 M1: First aberration 0.84 1.00 1.57 0.86 1.00 1.66
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 M4: Any 2 aberrations in 2 wk 0.81 1.00 2.63 0.72 1.00 2.43
 M5: Any 2 aberrations in 2 wk 0.83 1.00 2.44 0.77 1.00 2.11
*AUWROC, area under the weighted receiver operating characteristic curve; GP, general practitioner; GOPC, general outpatient clinic; HK, Hong Kong 
Island; KL, Kowloon; NTE, New Territories East; NTW, New Territories West. 
†See online Technical Appendix (available from www.cdc.gov/EID/content/14/7/1154-Techapp.pdf) for more detailed description of the multivariate 
model.
‡At a fixed specificity of 0.95. 
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